
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 1

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

LShape Partitioning: Parallel Skyline Query
Processing using MapReduce

Heri Wijayanto, Wenlu Wang, Wei-Shinn Ku, and Arbee L.P. Chen∗

Abstract—A skyline query searches the data points that are not domi-

nated by others in the dataset. It is widely adopted for many applications

which require multi-criteria decision making. However, skyline query

processing is considerably time-consuming for a high-dimensional large

scale dataset. Parallel computing techniques are therefore needed to

address this challenge, among which MapReduce is one of the most

popular frameworks to process big data. A great number of efficient

MapReduce skyline algorithms have been proposed in the literature

and most of their designs focus on partitioning and pruning the given

dataset. However, there are still opportunities for further parallelism. In

this study, we propose two parallel skyline processing algorithms using

a novel LShape partitioning strategy and an effective Propagation

Filtering method. These two algorithms are 2Phase LShape and

1Phase LShape, used for multiple reducers and single reducer, respec-

tively. By extensive experiments, we verify that our algorithms outper-

formed the state-of-the-art approaches, especially for high-dimensional

large scale datasets.

Index Terms—skyline query, parallel computing, partitioning strategy,

MapReduce

1 INTRODUCTION

Given a large number of data points, a skyline query
searches for the data points that are not dominated by
others. A data point dominates another if it is as good or
better in all attributes and better in at least one attribute
[1]. The set of data points that are not dominated by other
data points is called a skyline. Furthermore, the process to
search the skyline is named skyline queries. For example, a
customer wants to choose one hotel from many hotels that
are available near a beach. Each hotel has two attributes: its
distance to the beach, and its price. A hotel is dominant if no
other hotel has a smaller distance to the beach nor a price
equal to or smaller than its price. As shown in Fig. 1, the
skyline data points are t1, t2, t7, t8, and t12.

H. Wijayanto is with Department of Computer Science and Information
Engineering, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung,
Taiwan 41354, ROC, and Informatics Study Program, Engineering Faculty,
Mataram University, No. 62, Majapahit Rd., Mataram, Indonesia 83115,
EMAIL: heri@unram.ac.id.
W. Wang is with Department of Computer Science and Software En-
gineering, Auburn University, Auburn, AL 36849, USA. EMAIL: wen-
luwang@auburn.edu.
W.S. Ku is with Department of Computer Science and Software Engineering,
Auburn University, Auburn, AL 36849, USA. EMAIL: weishinn@gmail.com.
A.L.P. Chen is with Department of Computer Science and Information Engi-
neering, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung, Taiwan
41354, ROC. EMAIL: arbee@asia.edu.tw.
* corresponding author
Manuscript received XXX XX, XXXX; revised XXX XX, XXXX.

The skyline query is a popular approach to derive valu-
able information in big data. Specifically, skyline queries
provide an effective mechanism for multi-criteria decision
making [1], wireless sensor networks [2], and product rec-
ommendation [3]–[5]. Moreover, it draws the attention of
researchers to discover efficient algorithms since skyline
queries are computationally intensive in large scale and high
dimensional datasets.

Fig. 1. Example Skyline

Since first introduced in 2001, skyline problems [1] have

been extensively studied in the literature. Bö rzsonyi S. et
al., [1] proposed Block Nested Loops (BNL) algorithm to
determine the skyline data points in a large dataset that
does not fit in the memory. This approach was designed
for a single computer machine. It utilizes a window in the
main memory and a temporary file in the disk to store
incomparable data points. The divide and conquer algorithm
of BNL approach was also proposed and has become the
fundamental technique that is extended to the MapReduce
approach today. Basically, it divides the data space into
grids. Each grid computes skyline data points individually
then all grids results are merged together to calculate the
final result. Researchers also introduced varied algorithms
of skyline queries processing such as Bitmap [6], Sort Filter
Skyline (SFS) [7], and MBR-Oriented approach [8]. The sky-
line queries have several variants such as dynamic skyline [9],
reverse skyline [10], uncertain skyline [11], continuous skyline
[12], and spatial skyline [13].

When the number of skyline points is large, parallel
skyline evaluation still has an important meaning for mak-

http://www.ieee.org/publications_standards/publications/rights/index.html
mailto:heri@unram.ac.id
mailto:luwang@auburn.edu
mailto:weishinn@gmail.com
mailto:arbee@asia.edu.tw

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 2

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

ing decisions such as in the market analysis based on the
resulting skyline points. Based on our best knowledge, this
problem was first introduced in 2007 by Lin, Yuan, Zhang,
and Zhang, [14]. Methods were then proposed to select k of
the skyline points as the most representative skyline points
to make a decision. Following this work, we [3] proposed
to select the most k-demanding products from all skyline
products, which satisfy most customer preferences. In the
most recent study, Zhou, Li, Yang, and Li [15] find the
optimal combinations of skyline products for the marketing
strategy.

For real-world skyline applications, it is highly possible
that the skyline operator has to deal with a large-size input.
The skyline operator is able to refine the data to be used in
the subsequent analysis. Efficient algorithms and powerful
computing machines play a significant role in today’s big
data era. Due to the increasing size and complexity of
data, centralized approaches are no longer appropriate to
compute skyline queries. As mentioned in [16], the cen-
tralized approach of skyline processing is not appropriate
for a large amount of input data because the execution
time increases significantly (up to quadratic) when the
amount of input data increases. Our experiments also show
this drawback of the centralized approaches. Therefore,
researchers tend to develop parallel algorithms for skyline
processing. Currently, MapReduce framework has become
the de-facto standard for parallel processing [17]. Generally,
the MapReduce framework has two phases: map phase and
reduce phase. First, data are divided into partitions that are
accessed and managed separately in mapper machines. The
second phase is the reduce phase that merges the outputs of
map phase to an integrated output.

A large number of MapReduce skyline algorithms have
been published [18]–[26]. Calculating skyline queries in a
parallel manner has several challenges: data partitioning,
data pruning, data transferring overhead, and load bal-
ancing. Improper partitioning technique would inevitably
cause ineffective pruning and unbalanced work load. Also,
the data transfer among computer nodes becomes the major
challenge since the communication cost is expensive in par-
allel processing. Therefore, it is worth the effort to develop
an enhanced parallel algorithm to search skyline data points
in a large dataset based on MapReduce framework.

Our contributions can be summarized as follows:

• We propose an LShape partitioning strategy for sky-
line query processing that is designed for MapReduce
framework. In our merge phase, most of the local
skyline points are identified as the global skyline
points without extra computation, a sequential merge
of O(N 2) (N is the size of the union of the local skyline
points) is avoided; instead, we only need a light merge
of O(n2) (n << N , n is the number of data points in
shared data cells).

• We devise a Propagation Filtering. Taking advantage of
the properties of LShape partitions, as the filtering ob-
ject we use skyline points that are found in the locations
that prune most of the non-skyline points. Especially for
high-dimensional large size input, our filtering strategy
is able to avoid more expensive dominance tests, and
is, thus, more effective in reducing computational cost.

• We evaluate the performance of the proposed ap-
proaches by extensive experiments. Our experiments
show that the number of duplicating cells for multiple
reducers of the grid partitioning approaches grows ex-
ponentially when the number of dimensions increases.
Our two-phase MapReduce skyline algorithm named

2Phase LShape also suffers from this problem. There-
fore, we propose another one-phase MapReduce sky-

line algorithm named 1Phase LShape to avoid this
problem.

The rest of this paper is organized as follows. In Section 2
we discuss the related works that show the literature survey
of the MapReduce skyline queries processing. We present
the preliminaries and our proposed algorithms in Section
3. The results of experiments and analysis are presented in
Section 4. Future works and conclusion of this study are
provided in Section 5.

2 RELATED WORK

The general approaches of implementing MapReduce to
the skyline queries could be classified into two categories.
The first category divides the data into partitions based on
the grid that divides each dimension into several parts. The
second approach is angle-based partitioning which divides
the data space into several parts by using vectors which
contain angle and magnitude. These vectors start from the
origin and divide the data space based on the angle of the
vectors.

The first implementation of MapReduce for skyline
queries was published by B. Zhang et al., [18] in 2011. These
algorithms are called by MR-BNL, MR-SFS, and MR-Bitmap.
Those are the MapReduce implementations of the early cen-
tralized algorithms that are BNL [1], SFS [7], and Bitmap
[6]. The first MapReduce grid-based partitioning was also
presented in this work. It is a MapReduce implementation
of divide and conqueror in [1]. However, this approach lacks
strong pruning strategies that are mainly proposed in the
next approaches. Besides that, the bottleneck problem on
the reducing phase was identified in this study.

The next early MapReduce skyline algorithm was pub-
lished by L. Chen et al., [19] in 2012. It introduced the
angular partitioning approach. The first step is to translate
the Cartesian coordinate into a hyperspherical space. Then,
it separates the data space into sectors according to the
angular coordinates. Next, each sector performs the BNL
algorithm [1] in the mapper machine to find the local skyline
data points. Finally, the reducer merges all skyline data
points to determine the global skyline data points.

MapReduce Grid Partitioning based Multiple Reducers Sky-
line (MR-GPMRS) was proposed by K. Mullesgaard et al.,
[20] in 2014. This approach utilizes many reducer machines
to avoid the bottleneck of the reducing phase. Actually, K.
Mullesgaard et al., proposed two algorithms in [20]. Those
are MapReduce Grid Partitioning based on Single Reducers
Skyline (MR-GPSRS) and MR-GPMRS mentioned above.
These two approaches consist of two MapReduce phases.
In the first phase, MapReduce approach is used to construct
bitstring where each bit “1” in the string represents a non-
empty partition and bit “0” for empty partition respectively.
The bitstring is constructed in column-major or row-major

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 3

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

≺ /≺
∀ ∃

order. It will be used in the second phase to prune domi-
nated data points and calculate skyline data points. In the
second phase, the bitstring is broadcasted to all mapper
machines. Then, the mapper machines utilize the bitstring
to determine whether a data point is pruned or kept for
the local skyline computation. Based on our experiments in
evaluating the number of partitions, this approach suffers
from exploding the we called duplicated cells for high
dimensional data.

In 2016, J. Zhang et al., [21] proposed a MapReduce
algorithm that is called Proportional Partition-Aware Filtering
Partial-Presort Grid-Based Partition Skyline (PPF-PGPS). It is
a two-phase MapReduce algorithm for a large dataset that
utilizes both Angle-Based partitioning and Grid-Based par-
titioning. First, they use Angle-Based partitioning to filter
the dataset and split the dataset based on the angle of data
points. In the second phase, each partition is processed in a
mapper machine which performs Grid-Based partitioning to
calculate the local skyline data points. Then, the outputs of
mappers are combined in a reducer machine to compute the
global skyline. In addition, it sorts the grids to find skyline
data points in the second phase. However, according to our
experiments, the filtering approach of the first phase is not
effective for anti-correlated data.

Y. Park et al., [22] proposed an approach that is based
on the Quadtree data structure in 2013 called SKY-MR. This
approach has better load balancing because the number of
data points in each partition is expected to be the same.
The weakness of this this approach is that it needs sample
data points to construct the Quadtree rapidly. The Sky-
MR+ algorithm is an improvement of Sky-MR by the same
authors and was published in 2017 [23]. They improved the
pruning technique by dominance power filtering and im-
proved the load balancing. Sky-MR+ has a different method
to construct the Quadtree. It still needs samples to construct
the Quadtree. The performance of these two algorithms
depends on taking the sample data points to construct
Quadtree.

J. L. Koh et al., introduced MR-Sketch algorithm [24]
in 2017. Similar to MR-GPMRS [20], it is a multi-reducers
approach to address the reducer bottleneck problem. It
performs distributed dominance test to improve the perfor-
mance of MR-GPMRS. However, this approach still suffers
from communication overwhelm because mappers produce
duplicated local skyline sets and send them to several reduc-
ers. In other words, the distributed dominance test or DDT
replicates a partition to several reducer machines. It is not
efficient because it overwhelms transmission media that are
expensive in cluster computing. MR-Sketch also performs
sampling of the data in the first phase. Consequently, if the
random sampling does not take the proper samples then the
performance of this algorithm will be decreased.

The recent algorithm of MapReduce skyline queries
processing was published in 2018 by M. Tang et al., [25].
It utilizes Z-Order notation of data points. This approach
resists data skew and data straggler. The data skew is a
condition where the partition of the data is unbalanced.
It becomes a problem in parallel processing because the
execution time depends on the largest partition. The data
straggler is a condition where the number of skyline data
points in a partition is much larger than the others which

need the longest execution time. The problem in this ap-
proach is the Z-Order that is only suitable for integer dataset.
Besides that, this approach needs sampling data to construct
partitions. It could fail if the sampling step does not take
the proper sample. Similar to Sky-MR, and Sky-MR+, this
algorithm performs the reservoir sampling technique that is
the extension of random sampling.

Many efficient parallel skyline processing algorithms
based on MapReduce framework have been proposed [18]–
[26]. The main work of those approaches is in the par-
titioning the massive dataset. The pruning strategies are
developed based on the partitioning method. In general,
the partitioning strategies are based on the grid and angle.
The grid-based approaches have the advantage that it is
easy to avoid load balancing problems. On the other hand,
angle-based approaches have better pruning power that can
reduce more unnecessary data points. However, the most
recent algorithms can be classified into two groups where
the first is sampling based algorithms and the second is
non-sampling algorithms. Sampling based algorithms uti-
lize data samples to construct the partition to avoid load
balancing problem. However, there is no guarantee that the
sampling data represent the data distribution correctly. If
the data distribution is not represented well by the sample
data, then the performance of the algorithm is also less. The
algorithms that perform this sampling step are [5], [22], [23],
[25]. On the other hand, the algorithms that do not perform
the sampling step are [20] and [21]. The proposed algorithm
developed in this research is based on the non-sampling
algorithms namely MR-GPMRS and PPF-PGPS algorithms.

3 METHODOLOGY

This section provides a detailed explanation of our proposed
algorithm. The preliminary is presented first (Subsection 3.1)
and followed by our definitions of LShape partitioning con-
cepts (Subsection 3.2). Subsection 3.3 explains the proposed

two phases of the MapReduce algorithm named 2Phase
LShape algorithm. Subsection 3.4 formalizes our algorithms

developed in this study. The 1Phase LShape algorithm is
presented in Subsection 3.5.

3.1 Preliminaries

A data point ti in d-dimensional space is denoted by ti =
(ti,1, . . . , ti,j, . . . , ti,d) where ti,j is the value of the jth
dimension of ti. We denote D as a set of data points and

|D| the number of data points in D.

Definition 1. (Dominating) A data point ti dominates tj
if m, ti,m tj,m, and n, ti,n < tj,n. It is denoted as
ti tj and otherwise, ti tj which represents ti does
not dominate tj.

Definition 2. (Skyline) A data point that is not dominated

by any other data points in a dataset D is called a skyline
data point; the set of all skyline data points in D is

denoted as Skyline = {ti|∀j, j /= i, ti, tj ∈ D, tj /≺ ti}

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 4

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

≺ /≺

∀ ≺≺

{ }

}
{

∈

()

TABLE 1
Notation Table

noted by dci dcj , and otherwise, dci dcj which
represents dci does not dominate dcj .

Definition 4. (Strongly Dominating of Data Cell) Given two
data cells dci and dcj , dci strongly dominates dcj iff
m, dci.cminm < dcj .cminm. It is denoted by dci
dcj . On the other hand, dcj is strongly dominated by
dci.

Definition 5. (Skyline Data Cells) A skyline data cell is a
data cell that is not dominated by any other data cells.
A set of skyline data cells is denoted by SkyCells =

{dci | ∀j, j i, dci /≺ dcj}.

3.2 Concepts of LShape Partitioning

In this subsection, we formally define our LShape parti-
tioning concepts. For better clearly, we provide notation in
Table 1.

A conventional grid partitioning strategy divides each
dimension into a number of equal intervals. This num-
ber is called partition per dimension and denote as ppd.
As a result, the whole search space is partitioned into
ppdd cells. A cell can be uniquely identified by its
minimum coordinate denoted by cmin — i.e., cmin =

(min[1], . . . , min[j], . . . , min[d]) where min[j] is the min-
imum value of jth dimension in the corresponding cell,
which is also denoted as cminj. A cell that contains data
points is called data cell, denoted as dc, and uniquely
identified by its minimum coordinate dc.cmin. The set of
all data cells is denoted as DC. We assign each data cell an
index i as dci for clear presentation.

As shown in Fig. 2, dc.(60,20) dominates dc.(80,20). The
dc.(0,20) strongly dominates dc.(20,40)). And, the dc.(0,60),
dc.(20,40), and dc.(60,20) are the skyline data cells.
Concepts of LShape partitioning

With our proposed concept of strongly dominating data
cells, we guarantee strongly dominated data cells do not
contain any skyline data points, whose data points are
dominated by data points in the skyline data cells. However,
skyline data points may locate in the dominated data cells.
Our main idea is to focus on dominated but not strongly

dominated data cells. For example, in Fig. 2, dc.(20, 40)
strongly dominates dc.(40, 60) and the points in dc.(40, 60)
(e.g., t15, t25) are pruned. By our definition, dc.(40, 40) is

dominated (not strongly dominated) by dc.(40, 60), whose
data points t5, t6 can not be pruned.

The formalization of an LShape partition is summarized
as follows.

(i) We first identify skyline data cells. In Fig. 2,
SkyCells= dc.(0.60), dc.(20,40), dc.(60,20) (colored in
red).

(ii) We define candidate data cells by the set of dominated
but not strongly dominated data cells DCcandidate

Fig. 2 shows an example of data cells in R2 Euclidean DCcandidate = DC

dominated − DC Sdominated

space, which is partitioned by dividing each dimension into
5 equal intervals. Taking data point t7(70,30) as an example,
the corresponding data cell is identified by dc.(60,20).

Fig. 2. LShape Partitioning Strategy

Concepts of Data Cell

Definition 3. (Dominating of Data Cell) Given two data cells
dci and dcj , dci dominates dcj iff ∀m, dci.cminm

dcj .cminm and ∃n, dci.cminn < dcj .cminn. It is de-

DCdominated = {dci|∃dcs ∈ SkyCells, dcs ≺ dci}

DCSdominated = {dci|∃dcs ∈ SkyCells, dcs ≺≺ dci}

In Fig. 2, DCcandidate = dc.(0,80), dc.(20,60), dc.(40,40),
dc.(60,40), dc.(80,20) (colored in gray). After pruning
strongly dominated data cells, we have a union of
SkyCells and DCcandidate.

(iii) For each skyline data cell dcs SkyCells, we collect
data cells that belong to DCcandidate and are dominated
by dcs as a set of candidate cells w.r.t. dcs, denoted as
Lset(dcs)

Lset(dcs) = {dci | dci ∈ DCcandidate, dcs ≺ dci}

(iv) We sort each Lset(dcs) based on Z-order to form a tuple
L = dc1, dc2, . . . , dcn where dc1 is dcs because dcs is
the closest data cell to the origin. In general, these data
cells in L resembles an L-like shape in a 2-dimensional
space, and we call it an LShape partition.

An LShape partition L is identified by L’s dc1.cmin
denoted as L.(dc1.cmin) since dc1 is the only skyline data
cell in the partition.

In Fig. 2, there are three LShape partitions with each
corner cell (skyline data cell) of an LShape partition colored
by red. The first LShape partition is identified by L1 =

Symbols Description
t A data point
d The dimension of t
D A set of data points
dc A data cell

DC A set of data cells
cmin The minimum coordinate of a data cell

Skyline A set of skyline data points
SkyCells A set of skyline data cells

≺ Dominating
 ≺ not Dominating

≺≺ Strongly Dominating
 ≺ ≺ not Strongly Dominating

L An LShape partition
LS A set of LShape partitions
ppd partition per dimension

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 5

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

() L.(0, 60) = dc.(0, 60), dc.(0, 80), dc.(20, 60) . We denote the
set of L partitions that cover the whole search space as LS.

A data cell may belong to more than one LShape par-
tition. In Fig. 2, dc.(20, 60) is a member of L1.(0, 60) and
L2.(20, 40). We propose an Intersection Data Cell concept
as follows.

Definition 6. (Intersection Data Cell) A data cell dc that is a
member of more than one L partition. ∃ m and n, n /= m,

dci ∈ Lm and dci ∈ Ln.

3.3 The 2Phase LShape Proposed Algorithm

The first phase is the construction of LShape partitions and
the second phase is the computation of skyline data points
based on the LShape partitions. The first phase scheme is
shown in Fig. 3 and the second phase in Fig. 4.

Fig. 3. The First Phase of 2Phase LShape Algorithm

In the first phase, the LShape partitions are constructed
by distinct indices of every data point. Each data point is
indexed by its corresponding data cell that is dc.cmin. It
is a light MapReduce job because the data transmitted to
a reducer are very small. For example, it is similar to the
grid-based partitioning that divides each dimension into
ppd equally sized intervals, and the number of the cells is
ppdd (d is the number of dimensions). However, not all the
cells contain data points, and only data cells are processed
in the reducer to construct a set of LShape partitions.

In detail, the first phase shown in Fig. 3 starts from di-
viding dataset D into n chunks randomly. Then, each chunk
is processed in a mapper. A mapper determines each data
point index. A data point index is a data cell identifier where
it is located. A mapper only emits distinct data cell identities
to a reducer. In the other words, only distinct cells that are
contained data point/points (data cell) are processed in the
reducer to construct a set of LShape partitions. Next, the
reducer performs LShapeSetConstruction Algorithm that
is presented in Algorithm 1 to construct a set of LShape
partitions.

The scheme of the second phase is presented in Fig. 4.
First, a set of LShape partitions produced in the first phase
is broadcasted to all the mappers. Similar to the first phase,
dataset D is randomly balanced partitioned into n chunks
and each chunk is processed in a mapper. In this step,
data points that are not located in any LShape partitions
are filtered out. If a data point is a member of an LShape
partition, it is entered to a data cell in one LShape partition
or several LShape partitions for the intersection data cells.
Next, the Propagation Filtering algorithm explained in
Algorithm 4 is performed to find the skyline data points
in a particular LShape partition. Each LShape partition
produced in the mapper step is emitted to a corresponding

Fig. 4. The Second Phase of 2Phase LShape Algorithm

reducer to compute the skyline data points in entire dataset
D. This reducer also performs Propagation F iltering in
Algorithm 4. However, the skyline data points produced
by a reducer still contain non-skyline data points that are
located in the intersection data cells. Finally, the results
of reducers are combined in a machine and non-skyline
data points are removed by a light computation explained
in Lemma 3. It is similar to the MR-GPMRS [20] that
removes duplicated skyline data points in the final step.
In the LShape partitioning strategy approach, skyline data
points in an intersection data cell must be skyline for all
the LShape partitions which contain this data cell. The
technique is explained in detail in Subsection 3.4.

3.4 The Details of the Proposed Algorithms

3.4.1 Construction of a set of LShape Partitions

Construction of a set of LShape partitions is performed
by the reducer at the first phase. It is not computationally
intensive since the number of data cells is relatively small
compared to the number of data points. Assuming each
dimension is divided into the same number of partition ppd
then the number of cells is ppdd.

The reducer collects distinct data cells (without their data
points) identified from the mappers. The output of this step
is a set of LShape partitions LS that will be used in the next
phase. According to Definition 5, the SkyCells is calculated
based on the input data cells DC where each element of
SkyCells becomes the first element and it is to be the iden-
tifier of each LShape partition. This step is shown in Algo-
rithm 1 in line 1 of LShapeSetConstruction algorithm. The
elements of an LShape partition are data cells that are domi-
nated by the skyline data cell but not strongly dominated by
the skyline data cell (as explained in Subsection 3.2). There-
fore, all strongly dominated data cells by SkyCells in DC
are removed in Line 2 of LShapeSetConstruction algo-
rithm by running removeStronglyDominatedCells func-
tion. Next, the elements of each LShape partition L are
determined in line 3 that calls setLShapeMember function.
This function works as defined in Subsection 3.2 to find
members of an LShape partition. A data cell that is not
filtered in line 2 must be at least an element of an LShape
partition. Furthermore, if it is an element of more than
one LShape partition, then it is an intersection data cell
according to Definition 6. Finally, members of each LShape
partition Lj are sorted by Z-Order (line 4 to 6).

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 6

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

j

k

≤ ≤

j j

∈

k

∈

∈

()
⊆

∈

∈

∈

∈

∈

∈ ∈ ∈ ∈

1

≤
∃ ∈ ∈ ≺
∀ ∈ ∈

∈ ∈

1

1 1 n

⊆ ∈

∈

Algorithm 1 LShapeSetConstruction Algorithm

Input: DC

in D. Based on Lemma 1, dcLi(2 j n) is possible

to be dominated by other data cell dcLi where k < j. If
Output: LS dcLi /∈ DCinter then for all tp ∈ dcLi is only possible to

1: SkyCells = findSkylineCells(DC)
2: DC = removeStronglyDominatedCells(SkyCells, DC)
3: LS = setLshapeMember(SkyCells, DC)
4: for each L LS do

5: L = zOrderSort(L)
6: end for

 7: return LS

3.4.2 LShape Partitioning Strategy

In the second phase, the set of LShape partitions LS is
broadcasted to all the mappers. The input data D is divided
into multiple balanced chunks D! and each chunk is pro-
cessed in a mapper. With the whole set of LShape partitions
LS, a mapper filters out data points that are not a member
of any data cell in LS. If a data point is an element of a data
cell that belongs to an L (L LS), then this data point is
added to the corresponding data cell. This step is performed
in Lines 1 to 8 in LshapeMapper algorithm (Algorithm
2). Then, the mapper performs Propagation F iltering to
search for the skyline data points in an L. It is operated
for each L individually that is shown in Algorithm 2 Lines
9 to 11. Additionally, the Propagation F iltering is also
performed in the reduce phase to determine the skyline data
points in D. In this approach, the calculating of skyline data
points can be performed independently for each LShape
partition based on Lemma 2 and Lemma 3.

An important property of Z-order is presented in Lemma
1 according to [27].

Lemma 1. Given an LShape partition L and two data cells
dci L, dcj L, for any data point ti dci, tj dcj , if
dcj is ordered after dci then tj cannot dominate ti.

Proof. The proof is by contradiction. We assume all
the data cells in an LShape partition are sorted in Z-
order based on the closeness of the data cell cmin to the
origin. Since dcj is ordered after dci, there is at least a
dimension k s.t. dcj .cmink > dci.cmink. As a result,
ti, tj that ti dci, tj dcj , we have ti,k > tj,k. If
ti dci, tj dcj , tj ti according to the definition of
skyline dominance (Definition 1), ti,k tj,k which leads to

a contradiction. Thus, this concludes the proof. □

Local skyline data points found in an LShape partition
cannot be dominated by data points in other LShape parti-
tions, except those found locally in the intersection data cells.
It is presented in Lemma 2 as follows.

Lemma 2. (Independence) In an LShape partition Li,
SkylineLi is a set of skyline data points found in Li.
Assuming Li contains a set of intersection data cells
DCinter , we have DCinter Li (dcinter DCinter).
The skyline data points found in DCinter are denoted
as Skylineinter. Therefore, Skyline! = SkylineLi −

be dominated by other data points tq dcLi where k j.
Therefore, for any tp Skyline!, it cannot be dominated by
other data points in D □.

Algorithm 2 LShapeMapper Algorithm

Input: LS, D’ where D’ D.
Output: key value pairs key, L ; key is the id of L

LShape filtering
1: for each t D’ do
2: for each L LS do
3: if t is located in L then

4: L = add(L,t); add t to a corresponding dc L
5: Break
6: end if
7: end for
8: end for

Propagation filtering
9: for each L LS do

10: L = propagationFiltering(L)
11: end for

 12: return key value pairs (key, L)

Skyline Data Points in an Intersection Data Cell
A local skyline data point in an intersection data cell is

a global skyline data point if and only if it is a skyline data
point for the union of LShape partitions which overlap with
the intersection cell.

Lemma 3. For dcinter DCinter, a data point tj is skyline
data point in D if tj is determined as skyline data point

in all Ln where dcinter ∈ Ln.

Proof. Based on the proof of Lemma 2 and that dcinter
is dominated by each skyline data cell dcLn for all Ln
where dcinter Ln, then, a data point tj dcinter is
probably dominated by data point tk from any Ln where

dcinter ∈ Ln. Therefore, skyline data points in dcinter have

to be skyline data points in all Ln where dcinter ∈ Ln □.

Fig. 5. Example Intersection Data Cell

Fig. 5 shows two LShape partitions in two dimensional

Skylineinter, tn ∈ Skyline!, tn ∈ SkylineLj, Lj

and Lj ∈ LS.

Li,
space, L1 and L2. The dc.(10, 30) is an intersection data
cell because it exists in two LShape partitions. Based on
Lemma 2, we can be determine the skyline data points in

Proof. Based on Definition 5, the skyline data cell of Li each LShape partition individually. The skyline data points
is dcLi (Li = (dcLi, ..., dcLi)), and the skyline data points that result in L2 are t10, t3, and t5. The skyline data points

found in dcLi are not dominated by any other data points that result in L1 are t14, t5, t1, t11, t17, and t13. When these

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 7

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

{ }
∈

| |

)
(

∃
∀

| |
∃ ∃

two LShape partitions are combined, additional selection
is needed in the intersection data cell dc.(10, 30). Skyline
data points in this data cell must be skyline data points in
both LShape partitions. In this case, since t5 is available in
both L1 and L2 then t5 is the skyline data point and t14 is
removed.

We formally provide a policy to merge partitions as
follows:

(Partitions Merge Policy) We iterate each Li in an LS. The
first data cell in Li is the skyline data cell and it is directly
added to the final result without checking. We then iterate
data cells from the second to the last. If the cell is not
an intersection data cell, it is added to the final result.
Otherwise, the skyline data points in this data cell must
satisfy Lemma 3. After that, we add this intersection data
cell to the final result and delete this intersection data cell in
other LShape partitions.

Algorithm 3 mergeLStoR Algorithm

Input: set of LShape partition LS, the number of reducers R
Output: set of LShape partition groups LG

1: for each Li LS do
2: Gi = Li
3: add Gi to LG
4: end for
5: while LG > R do
6: Gf =find G with the smallest number of cells in LG
7: remove Gf from LG
8: Gs=find G with the smallest number of cells in LG
9: remove Gs from LG

10: newG=combine Gf and Gs
11: add newG to LG
12: end while
13: return LG

To have the balanced load for reducers, Algorithm 3

merges a set of LShape partitions into R groups, which
represents the number of reducers. Line 1 to 4 initializes a set
LG of groups of the LShape partitions. Initially, each group
contains one LShape partition. The process of merging the
LShape partitions starts for finding the first and the second
smallest groups Gf and Gs that is done on Line 6 and
8. Determining the smallest group is based on the total
number of data cells contained in the LShape partitions
in the group. Line 7 and 9 remove the selected groups
from LG. Then, Gf and Gs are combined to newG by
merging all LShape partitions of the two groups. Because
the LShape partitions are combined, there is no duplicated
intersection cell in a group. The newG is added to LG in
Line 11. The process from Line 6 to 11 is repeated until the
number of LG is equal to or less than R. The detailed
process of merging two or more LShape partitions follows
the Partition Merge Policy that is explained in this Subsection.

3.4.3 Propagation Filtering

The outline of the Propagation F iltering is presented as
follows:

• Starting from the skyline data cells, we traverse the rest
of the data cells iteratively in Z-Order.

• When evaluating a data cell (non-skyline data cell), it
is divided into two-levels checking: data cell and data
point.

• In data cell level checking, we follow Lemma 4 that not
all the data cells need to be compared.

• In data point level, we only keep data points that have
a dimension smaller than all the skyline data points
found in previous data cells.

• We find skyline data points in this data cell by BNL
algorithm.

Fig. 6. Example of Propagation Filtering in 2-dimensional space

Similar to [21], our filtering technique runs on the Z-order
sorted grids. This filtering is performed in an LShape parti-
tion to find skyline data points. An example of Propagation
F iltering for 2-dimensional data is illustrated in Fig. 6.
First, all data cells on an LShape partition are sorted based
on Z-order. Therefore, the skyline data cell will be processed
first, then followed by the data cells that are located nearest
to the skyline data cell. In the example of Fig. 6, the order
of data cells being processed is dc.(10, 10), dc.(20, 10),
dc.(10, 20), dc.(30, 10), dc.(10, 30) ; dc.(10, 10) is the skyline
data cell. First, the Propagation F iltering starts from the
skyline data cell that is shown in Fig. 6(a). In this specific
example, the result is two skyline data points from the
skyline data cell dc.(10, 10) that are t1 and t2. Then, based
on the result from the skyline data cell, we evaluate the
subsequent data cells that are closest to the skyline data cell,
which are dc.(20, 10) and dc.(10, 20). However, based on
Lemma 4, we do not need to evaluate all the data points
in the subsequent data cells. In data cell dc.(20, 10), we
only need to consider data points whose y dimension is less
than t2’s y dimension. Similarly, in data cell dc.(10, 20), we
only need to evaluate the data points whose x dimension
is less than t1’s x dimension. Then, the result of this step
is t3 in data cell dc.(20, 10), and t4 in data cell dc.(10, 20).
These results are then propagated to data cell dc.(10, 30)
and dc.(30, 10). Besides that, this approach does not need
to compare the data points in data cell dc.(10, 20) with
dc.(20, 10), data cell dc.(10, 20) with dc.(30, 10), data cell
dc.(30, 10) with dc.(10, 20), or data cell dc.(30, 10) with
dc.(10, 30) according to Lemma 4.

Lemma 4. Given data cell dcp.(x1, . . . , xd) and data cell
dcq .(y1, . . . , yd), if i, j, i j, xi < yi and xj > yj
then all data points in dcp and dcq are not comparable.

Proof. If data cell dcp dominates data cell dcq then it
must satisfy condition m, dcp.cminm dcq.cminm, and
n, dcp.cminn < dcq.cminn. Therefore, k, dcp.cmink >

dcq.cmink □.
Pseudo code of Propagation F iltering algorithm is

presented in Algorithm 4, which is executed by mappers
and reducers repeatedly for each L. The output is another

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 8

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

∈

∈

∪

Algorithm 4 PropagationFiltering Algorithm

Input: L (L has already been sorted by Z-order)
Output: L’ (It only contains skyline data points)

1: L! = ∅

starting from the first data cell dc in L (skyline data cell)
2: for each dc L do

3: if L! = ∅ then
4: for each dc’ L’ do
5: if needToCompare(dc.cmin, dc!.cmin) then

6: if dc! = ∅ then
7: indices = getIndicesToCompare(dc.cmin,

dc!.cmin)

Algorithm 5 needToCompare Algorithm

Input: dcA.cmin, dcB.cmin
Output: Boolean

1: greater = false
2: less = false

d is the number of dimension
3: for i = 1 to d do
4: if dcA.cmini < dcB.cmini then
5: less = true
6: else if dcA.cmini > dcB.cmini then

7: greater = true
8: end if

8: dc = propagationFilteringItem(dc!,dc,indices) 9: end for
9: end if

10: end if
11: end for
12: end if
13: dc = skylineBNL(dc)
14: L! = add(L!,dc)
15: end for

16: return L!

LShape partition L! that only contains skyline data points.
In Line 1, the output of LShape partition is denoted as
L!, which is initialized as an empty LShape partition. The
LShape partition L has been sorted by Z-Order, then it
will examine each data cell in the LShape partition start-
ing from the skyline data cell according to Lemma 2 and
Lemma 1. When evaluating the skyline data cell, if the
L! is empty, then the data points in the skyline data cell
are processed by BNL algorithm to locate skyline data
points (line 13). The resultant skyline data points are stored
in a new data cell dc and it is added to L!. Then, the
next data cell from the LShape partition is processed and
compared with the data cells in L!. We need to evaluate the
necessity of comparison between the data cell dc from L
and dc! from L! by needToCompare function, according to
Lemma 4. If comparison is necessary, the attributes indices
for comparison are determined by getIndicesToCompare
function. Finally, to find skyline data points in dc, we exe-
cute propagationFilteringItem function. Then the skyline
data points are added to L! with the same data cell dc as

 10: return ¬ (greater ∧ less)

The algorithm to evaluate the necessity of comparison for
dimensions between two data cells is presented in Algo-
rithm 6; we record the dimensions where the values are
equal between two data cells.

The data points level comparison of data points in two
data cells is presented in Algorithm 7. We find a dimension
of a data point in the current data cell (dc in Line 9 of
Algorithm 4) that is less than a dimension of a data point in
the other data cell. It previously has been evaluated (dc! in
Line 9 of Algorithm 4). This technique implements Lemma 1
that is the property of Z-order. For example, by the previous

evaluation, the data point t17(22,22) in data cell dc.(20, 20)
is detected as a skyline data point. Then, when evaluating

data cell dc.(30, 20), we only need to find a data point where
the second dimension is less than 22. This mechanism will
reduce the computation cost for high dimensions of data
because it does not need to compare all the dimensions and
only finds one dimension that is smaller. It is shown in Line
7, 8, and 13 that if a dimension of a data point is less than a
dimension of all the skyline data points in the previous data
cell, then this data point is not comparable to all skyline data
points found in the previous step. This step is done from the
first data cell to the current data cell of the LShape partition.
After this filtering is done, the final step in this algorithm is
to find skyline data points on the current data cell by BNL
algorithm. This is done in PropagationFiltering algorithm
in line 14 in Algorithm 4.

the new data cell. It is repeated until all the data cells in an

LShape partition are evaluated.
Algorithm 5 shows the algorithm to determine the neces-

sity of comparison between two data cells. It works based
on Lemma 4 that if a dimension x of a data cell dcA.cminx
is less than dcB.cminx, and another dimension y of data cell
dcA.cminy is greater than dcB.cminy, then dcA and dcB are
not comparable.

We do not need to compare all the dimensions in the
data point level since the cmin’s dimensions of data cells
indicate necessity. Taking data cell dc.(20, 20) and data cell

dc.(30, 20) as an example, we only need to compare the
second dimension because the first dimension of data points
in dc.(30, 20) is larger than the first dimension of data

points in dc.(20, 20). Furthermore, those two data cells have
already been sorted based on Z-Order, and the skyline data
points in dc.(20, 20) are calculated first before dc.(30, 20).
The implementation of this concept is explained in Fig. 6.

Algorithm 6 getIndicesToCompare Algorithm

Input: dcA.cmin, dcB.cmin
Output: indices

1: indices = ∅
d is the number of dimensions

2: for i = 1 to d do
3: if dcA.cmini = dcB.cmini then

4: indices i
5: end if
6: end for
7: return indices

3.5 The 1Phase LShape Algorithm

As explained in Subsection 3.2, the cells are constructed by
dividing each dimension of the dataset by an integer num-
ber ppd. For a smaller number of ppd, we get a larger size

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 9

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

∈

∈
∈

∪ ∈
∈

∪

Algorithm 7 propagationFilteringItem Algorithm

Input: dc, dc!, indices
where dc is current data cell and dc! is previous data cell

Output: dc”

1: dc” =∅
2: for each t dc do
3: Boolean isSmaller = false
4: for each t! dc! do
5: for each index indices do

6: if tindex < t!
index then

7: isSmaller = true
8: Break
9: end if

10: end for
11: end for
12: if isSmaller then
13: dc” t
14: end if
15: end for

16: return dc”

of cells. From our experiments shown in Fig. 13, we can see
that the best execution time is achieved when ppd=2. This
is because a smaller cell size produces a higher number of
LShape partitions, which is then followed by an increased
number of intersection data cells. Since the intersection data
cells need to be duplicated to the corresponding LShape
partitions, it slows down the execution time. The number
of duplicated intersection data cells increases exponentially
when the number of dimensions increases.

One effort to decrease the number of duplicated inter-
section cells is by merging LShape partitions into a number
of groups, equal to the number of reducers. Algorithm 3
is designed to balance the processing time of the reducers.
However, this effort does not change the result that the best
execution time is achieved when the ppd=2. In this case, it
only needs one reducer to find the global skyline points. We

therefore propose the 1Phase LShape algorithm.

Fig. 7. 1Phase LShape Algorithm

The 1Phase LShape algorithm scheme is illustrated in
Fig. 7. First, the dataset D is divided into n chunks and
each chunk is processed into a mapper by Algorithm 8. It
constructs a set of data cells DC by dividing data space

into 2d data cells (note that ppd=2) in Line 1. From Line
2 to 4, it assigns each data point to the corresponding its
data cell. Then in Line 5 the LShape partitions are formed
and strong dominated data cell pruned. Next in Line 6,
the Propagation F iltering is performed to find the local
skyline data points. Define the closest data cell to the origin
as origin cell. If the origin cell is not empty then only one
LShape partition is formed. However, if it is empty then

the maximum number of the LShape partitions is equal to
the number of the dimensions. Each mapper then emits the
LShape partitions to the reducer.

In this scheme, only one reducer is used because the
number of LShape partitions is small. Algorithm 9 shows
the process in the reducer. The cells from each LShape par-
tition are collected in Line 1 and a new LShape partition is
constructed in Line 2. This step prunes the strong dominated
data cell if it exists. Finally, Propagation F iltering is used
to find the global skyline data points.

Algorithm 8 1PhaseMapper Algorithm

Input: A chunk D’ of Dataset D
Output: A set of LShape partition LS

1: DC=construct data cells with 2 partition per dimension
2: for each ti D! do

3: assign ti to corresponding data cell C DC
4: end for
5: construct LS using Alg. 1
6: PropagationFiltering(LS) using Alg. 4
7: return LS

Algorithm 9 1PhaseReducer Algorithm

Input: LShape partitions LA and LB

Output: set of LShape partitions LS
1: DC=take all cells from LA LB
2: construct LS using Alg. 1
3: PropagationFiltering(LS) using Alg. 4

 4: return LS

4 EXPERIMENTS AND ANALYSIS

In this section, we present the performance of the LShape
partitioning strategy algorithm that is compared to the state
of the art approaches. We generate three types of dataset
distributions that are generally used in the field of study.
Those are anti-correlated dataset, independent dataset, and
correlated dataset. However, the results of the correlated
datasets are not presented because the results are similar to
those of the independent datasets. We generate those three
types of datasets for 10 million to 100 million data points
and each in 2 dimensions to 10 dimensions. Besides that,
we generate a real number of datasets in this experiment
because the real world dataset could be a real number
instead integer. A real dataset needs larger space in memory
than integer dataset. The ZDG+DM utilizes Z-Order that
is only suitable for integer data. Therefore, the ZDG+DM
algorithm cannot be implemented to process real number
datasets. However, the LShape partitioning strategy algo-
rithm implements Z-Order in the data cell level that uses an
integer to identify a data cell.

We implement our algorithms and state of the art ap-
proaches of this research, that are MR-GPMRS and PPF-
PGPS by Java 8 and Apache Spark MapReduce framework
version 2.2.0. Those algorithms are tested on a Hadoop clus-
ter on Elastic MapReduce AWS cloud computing service 1
where the maximum number of nodes in a cluster is 16

1. https://aws.amazon.com/emr

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 10

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

Q

machines. Each node has m4.large machines and each is 2.4 effective for correlated and independent dataset. However,
GHz Intel Xeon R E5-2676 v3, 2 cores, and 8 GB memory.

Based on our literature survey, we can classify algo-
rithms of MapReduce Skyline into two: sampling based al-

gorithms and non-sampling based algorithms. The 2Phase

and 1Phase LShape algorithms, PPF-PGPS, and MR-
GPMRS are classified into non-sampling algorithms. The

2Phase LShape, PPF-PGPS, and MR-GPMRS are two
phases parallel MapReduce skyline algorithms. Therefore,

we compare the performance of 2Phase LShape to the
same class of skyline MapReduce algorithms: PPF-PGPS
and MR-GPMRS. These comparations are presented in Sub-
section 4.1, 4.2, and 4.3. Next, we evaluate the performances

of 1Phase and 2Phase LShape algorithms in Subsection
4.4, 4.5, and 4.6. We also present our experiments on the
sampling effect in Subsection 4.7.

4.1 Varying Data Dimensions

The purpose of these experiments is to know the response
time with increasing number of dimensions. Actually, 1M
data can be processed in a single machine if the number of
dimensions is low. However, if the number of dimensions
increases, then the execution time would increase exponen-
tially, which can not be processed in a single machine. The
execution time not only depends on the data size but also
depends on the data dimensions and the data distribution.
Taking correlated data as an example, the execution time is
much faster than anti-correlated data.

The comparisons of execution time of 2Phase LShape
compared to PPF-PGPS and MR-GPMRS in the varied di-

mensions are shown in Fig. 8. Fig. 8(a) shows that 2Phase
LShape partitioning strategy algorithm outperforms the
PPF-PGPS and MR-GPMRS for anti-correlated dataset. In
low dimensional data such as 2D and 3D, the differences
of execution time are not as large as in high dimensional

dataset. However, the 2Phase LShape still runs faster than
the two baseline algorithms shown in Fig. 9 when we
present the comparisons in ranged size of dataset.

With increasing dimensions, the execution time of PPF-
PGPS and MR-GPMRS increases exponentially for the three

types of dataset shown in Fig. 8. However, 2Phase LShape
has a linear increase of execution time with an increasing

number of dimensions. It shows that the 2Phase LShape
and Propagation F iltering are effective in high dimen-
sional data.

Fig. 8. Comparison by Number of Dimensions

The PPF-PGPS does not perform well compared to

2Phase LShape because of the following reasons.: The
PPF-PGPS implements Progressive F iltering to reduce
the number of inputs in the first phase. This filtering is

the performance of the Progressive F iltering is poor for
anti-correlated dataset [21]. Furthermore, the data are more
widely spread in high dimensional data, which hurts the
filtering performance in the PPF-PGPS. Actually, when the
number of dimensions increases, we need to add more fil-
tering objects. This challenge is addressed by Propagation

F iltering in 2Phase LShape algorithm where the user
does not need to set the number of filtering objects. Our
Propagation F iltering technique also selects the filtering
object from the more effective locations in the search space

(e.g., skyline data cells). In the 2Phase LShape algorithm,
the skyline data points that result from processing the
skyline data cell can be treated as the filtering objects. Those
filtering objects are used to filter the data points when
processing the upcoming data cells, and the filtering objects
are added automatically after processing the current data
cell.

The data in the independent dataset are distributed
evenly across the data space. The number of skyline data
points in this data distribution is less than anti-correlated
dataset because there are more data points located near
the origin in the independent dataset than anti-correlated
dataset. This condition makes PPF-PGPS filtering technique
be able to filter more data points. It is shown in Fig. 8(b) that
for 2D, 3D, and 4D data, the performance of PPF-PGPS is

similar to 2Phase LShape. However, when the dimension
is 5 or more, the execution time of PPF-PGPS increases

exponentially, whereas the 2Phase LShape partitioning
strategy performs in linear time response.

4.2 Varying Data Sizes

In this subsection, we evaluate the performance of 2Phase
LShape compared to the MR-GPMRS and PPF-PGPS in
ranged data size. We use the fixed dimensions and range
the data size from 10 million to 100 million. We stop the
experiment if the difference of execution time is significant.
Because the response time is much different between MR-

GPMRS compared to PPF-PGPS and 2Phase LShape, we
separate it into two charts for independent and correlated
dataset.

The execution time of MR-GPMRS and PPF-PGPS in-
creases exponentially. Therefore, we need to choose a proper
dimension to evaluate the execution time based on the
varied data size, otherwise, the execution time between
algorithms will be a very large difference. Moreover, the
longest computation time is unacceptable (e.g., weeks) in
real-life. For anti-correlated dataset, it is shown in Fig. 8.a

that the performance of 2Phase LShape and PPF-PGPS
is similar in up to 3-dimensional anti-correlated dataset.
Here, the MR-GPMRS has fast execution time. Therefore,
we use 3-dimensional anti-correlated dataset for this ex-
periment. For the independent dataset, based on Fig. 8.b,

the execution time of 2Phase LShape, PPF-PGPS, and
MR-GPMRS is small in 4-dimensional dataset. Moreover,

PPF-PGPS and 2Phase LShape have similar execution
time and then PPF-PGPS execution time increases signifi-
cantly in 5-dimensional independent dataset compared to

2Phase LShape performance. Therefore, in the indepen-
dent dataset, we use a 4-dimensional dataset to evaluate the

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 11

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

MR-GPMRS, PPF-PGPS, and 2Phase LShape partitioning

strategy. However, because the performances of 2Phase
LShape and PPF-PGPS are similar, we use a 5-dimensional
independent dataset to evaluate these two algorithms.

Fig. 9. Comparison by Data Sizes for Anti-Correlated Data

For the anti-correlated dataset, the performance of

2Phase LShape, PPF-PGPS, and MR-GPMRS is shown in
Fig. 9. We choose 3-dimensional data for this evaluation

since the performances of 2Phase LShape and PPF-PGPS
are similar in 3-dimensional data as shown in Fig. 8.a.
Therefore, we investigate more in this dimension from 10

million to 100 million data. The execution time of 2Phase
LShape of the input dataset from 10 to 100 million increases
slightly. However, the execution time of the other two algo-

rithms increases dramatically. It shows that 2Phase LShape
performs much better than the other two. For instance, with

70 million data, 2Phase LShape runs in 108 seconds (1.8
minutes), PPF-PGPS runs in 2460 seconds (41 minutes), and
MR-GPMRS runs in 12960 seconds (3.6 hours).

Fig. 10. Comparison by Data Sizes for Independent Data

The execution time of algorithms for independent

dataset is shown in Fig. 10(a) and 10(b). As shown in
Fig. 10(a), the performance of MR-GPMRS is worse than

PPF-PGPS and 2Phase LShape. Fig. 10(b) shows the com-

parison of 2Phase LShape with PPF-PGPS. Based on these

observations, the 2Phase LShape algorithm performs bet-
ter in varied number of data for independent and correlated
data. However, in the independent dataset, the execution
time of PPF-PGPS drops significantly when the number of
data increases such as in Fig. 10(b) on 60M data. In this
case, data with such distributions benefit from the PPF-
PGPS filtering process since a large number of data points
are successfully removed during the mapper phase. As
a result, the execution time of independent dataset does
not increase smoothly when input data grows, showing
that the performance of PPF-PGPS filtering depends on
the distribution of input data [21]. Independent data has
more probability to be close to the origin. Those data points
have a large dominating region and are very sensitive to

the filter process. If those data points are detected early
in the progressive filtering on PPF-PGPS, then the overall
execution will be fast. Besides, as mentioned in [21], PPF-
PGPS performs heuristic to select the best filtering objects.
It is commonly understood that heuristic algorithm could
be trapped in the local optima. We found in our experiment
that PPF-PGPS algorithm has fluctuated increasing execu-
tion time with the increasing number of data.

4.3 Varying Number of Computer Nodes

The next experiment is the evaluation of algorithms with
varying number of computer nodes in a Hadoop cluster.
We select a proper number of dimension and data size
based on the experiment in Section 4.2 to anticipate a long
execution time when the number of machines used is small.
Next, we divide the comparison into two experiments and
charts because the execution time of MR-GPMRS compared

to 2Phase LShape and PPF-PGPS is much longer.

The execution time of MR-GPMRS has a logarithmic
decreasing trend when the number of machines increases.
It is shown in Fig. 11(a) and 12(a) that the execution time is

much higher than that of PPF-PGPS and 2Phase LShape.

Fig. 11. Comparisons by the number of computer nodes for Anti-
Correlated Data

In Fig. 11(b) and 12(b), 2Phase LShape also has a loga-
rithmic decreasing with the increasing number of machines
but it runs much faster than MR-GPMRS. PPF-PGPS has
fluctuating execution time in these experiments although
the trends are also in logarithmic decreasing. Similar to the
analysis of the previous experiment, fluctuating execution
time is caused by the data distribution and the choosing
of filtering objects. The heuristic function may not select
the best filtering object although the input data are the
same, since in the first step of the MapReduce framework,
it divides the data into several chunks according to the
number of machines. Therefore, with different number of
machines, the data chunks of the data are also different and
so are the selected objects.

Based on the increasing number of executor machines,

2Phase LShape performs better than PPF-PGPS in the
anticorrelated data as depicted in Fig. 11(b). As explained
in Section 4.2, PPF-PGPS performs worse to filter out data
in the PPF phase for the anti-correlated dataset. In the
independent dataset dataset, PPF-PGPS performs better
with small number of machines but when the number of

machines grows, the execution time of 2Phase LShape
becomes similar to PPF-PGPS as shown in Fig. 12(b).

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 12

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. Comparisons by the number of computer nodse for Independent
Data

4.4 Varying Cell Sizes

The main purpose of these experiments is to know the
effect of the number of partitions. Intuitively, a smaller size
of cells produces a larger number of LShape partitions.

It has been explained in Subsection 3.5 to vary the cell
sizes. Interestingly, our experiments show that the number
of duplicated intersection cells increases exponentially when
the number of dimensions increases, as shown in Fig. 13(a).

Because the partitioning strategy of our approach is ex-
tended from the MR-GRPMRS partitioning strategy, our ex-
periments also show that it also suffers from the explosion of
duplicated cells. However, the number of duplication cells

in MR-GPMRS is a little bit higher than 2Phase LShape.

It is because the 2Phase LShape produces a smaller num-
ber of partitions than MR-GPMRS as shown in Fig. 13(b).
Furthermore, the Propagation F iltering proposed in this

study performs well then the execution time of the 2Phase
LShape runs is smaller than MR-GPMRS as shown in Fig 8,
9 and 10.

Next, in Fig. 13(c) and 13(d), we evaluate the number

of reducers used for the 2Phase LShape algorithm. These
experiments show that one reducer is always better. When
we use ppd = 1, a centralized BNL algorithm is used, and
the performance is worse than that ppd = 2. In Fig. 13(d), the
execution time of ppd = 3 increases significantly. By dividing
each dimension by 3 or other odd numbers, there must be
a cell located at the center of data space. Generally, data
points are concentrated on the center of the data space for
correlated and anti-correlated datasets. Therefore, for ppd =
3, the cell located at the center of the data space is the most
populated cell which is not pruned and it is duplicated to
the correlated LShape partitions. Consequently, the number
of data processed by mappers and reducers is larger than the
input dataset and the execution time increases significantly.
This effect also happens when ppd = 5 although it is not
as significant. However, when ppd is even or larger than 5,
the most populated data cell is probably pruned or it is not
duplicated.

4.5 2Phase and 1Phase LShape Algorithms

We compare the 2Phase and 1Phase LShape algorithms
in this subsection. We merge the LShape partitions by
Algorithm 3 into one group and use one reducer for the

2Phase LShape algorithm to make it comparable to the

1Phase LShape algorithm which uses one reducer. We
use 10 million to 100 million 3-dimensional anticorrelated
datasets and the result is shown in Fig. 14. Based on this

Fig. 13. Cell Sizes Experiments

experiment, the 1Phase algorithm has a better performance
than the 2Phase LShape algorithm. It is because 1Phase
LShape algorithm does not need to construct the LShape

partitions in the first phase of the 2Phase LShape algo-
rithm.

Fig. 14. 1Phase vs 2Phase LShape approach

4.6 Real-World Dataset

The experiments utilize the real-world dataset HEPMASS 2.
It is a dataset used in high-energy physics experiments for
machine learning to find the signature of exotic particles. To
find the exotic particles, Baldi, Cranmer, Faucett, Sadowski,
and Whiteson [28] use a parameterized neural network
to classify a new particle. In atomic reaction in quantum
physics, when an elementary particle named quark collides
a particle, it produces energy and new particles. Because the
number of the new particles explodes in the atomic reaction,
the dataset for this research is very large. It is interesting
to find the dominating particles such that researchers can
prune a large number of particles dominated by others.

This dataset includes 3 tables each containing 10.5 mil-
lion records with 28 attributes. The amount of data is
relatively small compared to our synthetically dataset, and
we vary the number of attributes and the number of com-

puter nodes used to find the performance of the 1Phase
LShape algorithm. We perform two experiments in real-
world datasets. The first evaluates the varying number of
computer nodes, i.e. 3, 4, 8, 12, and 16 computer nodes.
The second observes the varying number of dimensions of
the dataset, i.e. the first 3, 4, ..., and 10 dimensions. The
results are shown in Fig. 15(a) and 15(b). In Fig. 15(a), we

2. https://archive.ics.uci.edu/ml/datasets/HEPMASS

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 13

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

| | − | | | |

see that the best execution time is achieved when there are 8
computer nodes used. When there are more than 8 computer
nodes used, the execution time increases slightly because it
needs more data transfer among the nodes. Fig. 15(b) shows
an exponential increase of the execution time for increasing
number of dimensions of the HEPMASS dataset using 8
computer nodes.

Fig. 15. Real-World Dataset

4.7 Effectiveness of Sampling

Our decision to develop a non-sampling parallel skyline
algorithms is based on the experiments on the effectiveness
of the sampling strategy. We implemented a random sam-
pling method commonly used in the field named Reservoir
Sampling. Our experiment to evaluate the effectiveness is
as follows. First, we generate a fixed size of dataset D in
three data distributions. Second, we take asamples S from
1% to 10% of the dataset D. Third, to measure the effec-
tiveness of the sampling, we find skyline points Sky of the
sample S and filter out the dataset D by Sky. The set of the
remaining data points after the filtering is called F . Finally,

we calculate the effectiveness ratio by (D F)/ D . The
results are shown in Fig. 16. It can be seen that the sampling
is only effective for higher dimensions for correlated dataset,
and it is less effective for the independent dataset, and worst
for the anticorrelated dataset. The results are shown in Fig.
16. As is shown in Fig. 16(c) the effectiveness of sampling
is above 80% for the 1% sampling of a 10-dimensional
correlated dataset. For the independent dataset, Fig. 16(b),
the effectiveness drops to around 50% for the 10% sampling
of 10-dimensional dataset. In Fig. 16(a), the effectiveness for
the anticorrelated dataset drops to below 30% for all the
experiments.

5 CONCLUSION AND FUTURE RESEARCH

In this study, we have presented our work on the parallel
Skyline queries processing based on MapReduce frame-

work. We introduced a new partitioning strategy that is
called by LShape partitioning strategy, a variant of grid

based partitioning. The LShape partitioning strategy has
the advantage that we can utilize new filtering method that

is called Propagation F iltering. The LShape partitioning
strategy and Propagation F iltering work better than the

state of the art of our approach, MR-GPMRS and PPF-
PGPS which are the non-sampling algorithm approaches.

It is shown in our intensive experiments for anti-correlated,
independent, and correlated dataset that the performance
becomes better in high dimension and high number of data.

Future research based on MapReduce skyline process-
ing can be divided into categories as follows. The first is

improving the existing algorithms to become more efficient
with more balanced partitioning, increasing the pruning
power, and reducing the communication overhead among
the mappers and reducers. The second of the future re-
search is the study of the MapReduce skyline queries in
the variants of skyline queries such as dynamic skyline,
reverse skyline, uncertain skyline, and continuous skyline.
Each variant of skyline queries needs further technique to
process the data because not all variants are composable.
And the third is the utilization of the MapReduce skyline
queries for multi-criteria decision making in real dataset to
find valuable information in many fields such as health,
transportation, economics, and others.

ACKNOWLEDGMENT

This research has been funded in part by the R.O.C. Ministry
of Science and Technology grant 107-2221-E-468-013-, and
the U.S. National Science Foundation grants IIS-1618669 (III)
and ACI-1642133 (CICI).

REFERENCES

[1] S. Borzsony, D. Kossmann, and K. Stocker, “The Skyline opera-
tor,” Proceedings 17th International Conference on Data Engineering,
pp. 421–430, 2001.

[2] G. Wang, J. Xin, L. Chen, and Y. Liu, “Energy-efficient reverse
skyline query processing over wireless sensor networks,” IEEE
Transactions on Knowledge and Data Engineering, vol. 24, no. 7,
pp. 1259–1275, 2012.

[3] C. Y. Lin, J. L. Koh, and A. L. Chen, “Determining k-most demand-
ing products with maximum expected number of total customers,”
IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 8,
pp. 1732–1747, 2013.

[4] G. Xiao, K. Li, and K. Li, “Reporting L Most Favorite Objects in
Uncertain Databases with Probabilistic Reverse Top-k Queries,”
Proceedings - 15th IEEE International Conference on Data Mining
Workshop, ICDMW 2015, pp. 1592–1599, 2016.

[5] J.-L. Koh, C.-Y. Lin, and A. L. P. Chen, “Finding k most favorite
products based on reverse top-t queries,” The VLDB Journal,
vol. 23, no. 4, pp. 541–564, 2014.

[6] B. C. Tan, K.-L.; Eng, P.-K. Eng; Ooi, “Efficient progressive skyline
computation,” in VLDB, 2001.

[7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with
Presorting,” in ICDE, 2003.

[8] J. Zhang, W. Wang, X. Jiang, W.-S. Ku, and H. Lu, “An mbr-
oriented approach for efficient skyline query processing,” in 2019
IEEE 35th International Conference on Data Engineering (ICDE),
pp. 806–817, IEEE, 2019.

[9] D. Papadias, G. Fu, and B. Seeger, “An Optimal and Progresive
Algorithm for Skyline Queries,” in ACM SIGMOID, 2003.

[10] E. Dellis and B. Seeger, “Efficient Computation of Reverse Skyline
Queries,” VLDB 07 Proceedings of the 33rd international conference on
Very large data bases, pp. 291–302, 2007.

[11] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic Skylines on
Uncertain Data,” 33rd International Conference on Very Large Data
Bases, pp. 15–26, 2007.

[12] Y. Tao and D. Papadias, “Maintaining Sliding Window Skylines on
Data Streams,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 18, no. 3, pp. 377–391, 2006.

[13] M. Sharifzadeh and C. Shahabi, “The spatial skyline queries,” in
Proceedings of the 32nd international conference on Very large data
bases, pp. 751–762, Citeseer, 2006.

[14] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting stars: The k
most representative skyline operator,” Proceedings - International
Conference on Data Engineering, pp. 86–95, 2007.

[15] X. Zhou, K. Li, Z. Yang, and K. Li, “Finding optimal skyline
product combinations under price promotion,” IEEE Transactions
on Knowledge and Data Engineering, vol. 31, no. 1, pp. 138–151, 2019.

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021470, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF XXXXX, VOL. XX, NO. XX, XXXX 14

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: National Science Foundation. Downloaded on September 25,2020 at 23:14:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 16. Sampling effect of three data distributions

[16] A. Vlachou, C. Doulkeridis, and Y. Kotidis, “Angle-based space

partitioning for efficient parallel skyline computation,” in Proceed-
ings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’08, (New York, NY, USA), p. 227–238,
Association for Computing Machinery, 2008.

[17] M. Parsian, Data Algorithms Recipes for Scaling up with Hadoop and
Spark. Boston; Farnhan; Sebastapol; Tokyo: O’Reilly, 2015.

[18] B. Zhang, S. Zhou, and J. Guan, “Adapting Skyline Computation
to the MapReduce Framework: Algorithms and Experiments,”
Lecture Notes in Computer Science, vol. 6637, no. 60873040, pp. 403–
414, 2011.

[19] L. Chen, K. Hwang, and J. Wu, “MapReduce skyline query pro-
cessing with a new angular partitioning approach,” Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops, IPDPSW 2012, pp. 2262–2270, 2012.

[20] K. Mullesgaard, J. L. Pedersen, H. Lu, and Y. Zhou, “Efficient
Skyline Computation in MapReduce,” Proceedings of the 17th Inter-
national Conference on Extending Database Technology, no. c, pp. 37–
48, 2014.

[21] J. Zhang, X. Jiang, W. S. Ku, and X. Qin, “Efficient parallel skyline
evaluation using MapReduce,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 7, pp. 1996–2009, 2016.

[22] Y. Park, J.-K. Min, and K. Shim, “Parallel computation of skyline
and reverse skyline queries using mapreduce,” Proceedings of the
VLDB Endowment, vol. 6, no. 14, pp. 2002–2013, 2013.

[23] Y. Park, J. K. Min, and K. Shim, “Efficient Processing of Skyline
Queries Using MapReduce,” IEEE Transactions on Knowledge and
Data Engineering, vol. 29, no. 5, pp. 1031–1044, 2017.

[24] J. L. Koh, C. C. Chen, C. Y. Chan, and A. L. Chen, “MapReduce
skyline query processing with partitioning and distributed domi-
nance tests,” Information Sciences, vol. 375, pp. 114–137, 2017.

[25] M. Tang, Y. Yu, W. G. Aref, Q. M. Malluhi, and M. Ouzzani,
“Efficient Parallel Skyline Query Processing for High-Dimensional
Data,” IEEE Transactions on Knowledge and Data Engineering, vol. 30,
no. 10, pp. 1838–1851, 2018.

[26] W. Wang, J. Zhang, M.-T. Sun, and W.-S. Ku, “Efficient parallel
spatial skyline evaluation using mapreduce,” in Proceedings of the
20th international conference on extending database technology, 2017.

[27] K. C. K. Lee, B. Zheng, H. Li, and W.-C. Lee, “Approaching
the skyline in z order,” in Proceedings of the 33rd International
Conference on Very Large Data Bases, VLDB ’07, pp. 279–290, VLDB
Endowment, 2007.

[28] P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, and D. Whiteson,
“Parameterized neural networks for high-energy physics,” The
European Physical Journal C, vol. 76, 2016.

Heri Wijayanto received his BSc and MSc de-
gree from Gadjah Mada University, Indonesia.
Currently he is working toward his PhD degree
in the department of Computer Science and In-
formation Engineering at Asia University. He is a
lecturer at Informatics Study Program, Engineer-
ing Faculty, Mataram University, Indonesia. His
research interests include databases, software
engineering, and information security.

Wenlu Wang received her BSc from Beihang
University and MSc from New York University.
Currently she is working toward her PhD in the
department of Computer Science and Software
Engineering at Auburn University. Her research
interests include data science and data manage-
ment.

Wei-Shinn Ku (S’02-M’07-SM’12) received his
Ph.D. degree in computer science from the Uni-
versity of Southern California (USC) in 2007. He
also obtained both the M.S. degree in computer
science and the M.S. degree in electrical engi-
neering from USC in 2003 and 2006, respec-
tively. He is a program director at the National
Science Foundation and a professor with the
Department of Computer Science and Software
Engineering at Auburn University. His research
interests include databases, data science, mo-

bile computing, and cybersecurity. He has published more than 100
research papers in refereed international journals and conference pro-
ceedings. He is a senior member of the IEEE and a member of the ACM
SIGSPATIAL.

Arbee L.P. Chen received a Ph.D. degree in
computer engineering from the University of
Southern California, and is currently a Chair Pro-
fessor of Computer Science at Asia University,
and a professor of Department of Computer Sci-
ence at National Tsing Hua University, by joint
appointment. Dr. Chen was a Member of Tech-
nical Staff at Bell Communications Research,
USA, and a Research Scientist at Unisys, USA.
Dr. Chen organized the Eleventh IEEE Data En-
gineering Conference in Taiwan, and continu-

ously serves in various capacities for international conferences and
journals. He was invited to deliver a speech in the NSF-sponsored In-
augural International Symposium on Music Information Retrieval, USA,
the IEEE Shannon Lecture Series, USA, and the Institute for Advanced
Study of Hong Kong University of Science and Technology. Dr. Chen’s
current research interests include big data analytics, top-k queries,
and multimedia information retrieval. He has published more than 250
papers in renowned international journals and conference proceedings,
and was a visiting scholar at Kyoto University, King’s College London,
Stanford University, Boston University, Harvard University, and Hong
Kong University of Science and Technology.

http://www.ieee.org/publications_standards/publications/rights/index.html

